I B.Tech - II Semester - Regular Examinations - JULY 2024

ENGINEERING PHYSICS (Common for EEE, ECE, CSE)

Duration :	3	hours
-------------------	---	-------

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.

PART – A

- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

		BL	CO
1.a)	Mention the characteristics of a laser.	L1	CO2
b)) Define Total Internal Reflection.		CO1
c)	Define packing fraction.	L1	CO1
d)	Discuss any two applications of X-ray	L2	CO3
	diffraction.		
e)	Define Di-electric polarization and Di-electric	L1	CO3
	constant.		
f)	f) Write any two properties of anti-ferro magnetic		CO3
	materials.		
g)	An electron is bound in one-dimensional	L3	CO5
	potential box of size 1×10^{-10} m. Find its energy		
	value in the ground state.		
h)	Define Fermi energy.	L1	CO5
i)	Show the variation of Fermi level with	L2	CO4
	temperature in n-type semiconductor.		
j)	What is an intrinsic semiconductor?	L1	CO1

PART – B

	1		1	1	,	
			BL	CO	Max.	
					Marks	
UNIT-I						
2	a)	Demonstrate the construction and working	L3	CO2	6 M	
		of Ruby laser.				
	b)	Explain pumping and illustrate various	L4	CO4	4 M	
		pumping mechanisms.				
		OR				
3	a)	Explain acceptance angle and numerical	L3	CO2	7 M	
		aperture. Derive the expression for				
		acceptance angle.				
	b)	Select and discus any three general	L4	CO4	3 M	
		applications of optical fiber.				
	1		1			
4		UNIT-II		002	7.)(
4	a)	Sketch the seven types of crystal systems	L3	CO3	7 M	
	• `	with the Bravais Lattices.		<u> </u>		
	b)		L3	CO3	3 M	
		radius is 0.1278 nm. Calculate the inter				
		planar spacing for (2 1 2) planes.				
		OR				
5	a)	Explain Bragg's law of X-ray diffraction.	L3	CO3	3 M	
	b)	Explain powder method to determine the	L4	CO5	7 M	
		crystal structure.				
	1	UNIT-III	I	I		
6	Ex	plain electronic polarization. Calculate the	L3	CO3	10 M	
	ele	ctronic polarizability in a Di-electric				
	ma	terial.				

		OR					
7	a)	Explain the classification of magnetic materials into Dia, Para and Ferro magnetic materials.	L3	CO3	6 M		
	b)	Differentiate soft and hard magnetic materials.	L4	CO5	4 M		
	UNIT-IV						
8	a)	Interpret Schrodinger time independent wave equation for a particle.	L3	CO3	7 M		
	b)	Explain the significance of wave function.	L4	CO5	3 M		
		OR					
9	a)	Explain Fermi-Dirac distribution function and its variation with temperature.	L4	CO5	7 M		
	b)	Explain the salient features of classical free electron theory of metals.	L3	CO3	3 M		
UNIT-V							
10	Ca	lculate the density of electrons in the	L3	CO2	10 M		
		nduction band of an intrinsic niconductor.					
OR							
11	a)	Explain Hall effect and derive the expression for Hall coefficient.	L4	CO4	7 M		
	b)	Infer any three applications of Hall effect.	L4	CO4	3 M		